Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Nanobiotechnology ; 20(1): 276, 2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1886947

ABSTRACT

In the last decade, the development of messenger RNA (mRNA) therapeutics by lipid nanoparticles (LNP) leads to facilitate clinical trial recruitment, which improves the efficacy of treatment modality to a large extent. Although mRNA-LNP vaccine platforms for the COVID-19 pandemic demonstrated high efficiency, safety and adverse effects challenges due to the uncontrolled immune responses and inappropriate pharmacological interventions could limit this tremendous efficacy. The current study reveals the interplay of immune responses with LNP compositions and characterization and clarifies the interaction of mRNA-LNP therapeutics with dendritic, macrophages, neutrophile cells, and complement. Then, pharmacological profiles for mRNA-LNP delivery, including pharmacokinetics and cellular trafficking, were discussed in detail in cancer types and infectious diseases. This review study opens a new and vital landscape to improve multidisciplinary therapeutics on mRNA-LNP through modulation of immunopharmacological responses in clinical trials.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles , Humans , Lipids , Liposomes , Nanoparticles/therapeutic use , Pandemics , RNA, Messenger/genetics
2.
Int J Pharm ; 614: 121458, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1615600

ABSTRACT

For successful translation of targeting nanomedicines from bench to bedside, it is vital to address their most common drawbacks namely rapid clearance and off-target accumulation. These complications evidently originate from a phenomenon called "protein corona (PC) formation" around the surface of targeting nanoparticles (NPs) which happens once they encounter the bloodstream and interact with plasma proteins with high collision frequency. This phenomenon endows the targeting nanomedicines with a different biological behavior followed by an unexpected fate, which is usually very different from what we commonly observe in vitro. In addition to the inherent physiochemical properties of NPs, the targeting ligands could also remarkably dictate the amount and type of adsorbed PC. As very limited studies have focused their attention on this particular factor, the present review is tasked to discuss the best simulated environment and latest characterization techniques applied to PC analysis. The effect of PC on the biological behavior of targeting NPs engineered with different targeting moieties is further discussed. Ultimately, the recent progresses in manipulation of nano-bio interfaces to achieve the most favorite therapeutic outcome are highlighted.


Subject(s)
Nanoparticles , Protein Corona , Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL